Sleep and circadian rhythms in humans.
نویسندگان
چکیده
During the past 50 years, converging evidence reveals that the fundamental properties of the human circadian system are shared in common with those of other organisms. Concurrent data from multiple physiological rhythms in humans revealed that under some conditions, rhythms oscillated at different periods within the same individuals and led to the conclusion 30 years ago that the human circadian system was composed of multiple oscillators organized hierarchically; this inference has recently been confirmed using molecular techniques in species ranging from unicellular marine organisms to mammals. Although humans were once thought to be insensitive to the resetting effects of light, light is now recognized as the principal circadian synchronizer in humans, capable of eliciting weak (Type 1) or strong (Type 0) resetting, depending on stimulus strength and timing. Realization that circadian photoreception could be maintained in the absence of sight was first recognized in blind humans, as was the property of adaptation of the sensitivity of circadian photoreception to prior light history. In sighted humans, the intrinsic circadian period is very tightly distributed around approximately 24.2 hours and exhibits aftereffects of prior entrainment. Phase angle of entrainment is dependent on circadian period, at least in young adults. Circadian pacemakers in humans drive daily variations in many physiologic and behavioral variables, including circadian rhythms in alertness and sleep propensity. Under entrained conditions, these rhythms interact with homeostatic regulation of the sleep/wake cycle to determine the ability to sustain vigilance during the day and to sleep at night. Quantitative understanding of the fundamental properties of the multioscillator circadian system in humans and their interaction with sleep/wake homeostasis has many applications to health and disease, including the development of treatments for circadian rhythm and sleep disorders.
منابع مشابه
Effect of an Antagonist of Vasoactive Intestinal Polypeptide on Biological Rhythm of Rest Activity in the Rat
Abstract Vasoactive Intestinal Polypeptide (VIP), has been found in different neurotransmitter systems and exists in various nerve tracts in the brain. Potential role of this peptide in physiological processes such as regulation of sleep and wakefulness, and biological rhythms has been confirmed in several reports. In the present research effects of intracerebroventricular (ICV) injection of a...
متن کاملCircadian rhythms and sleep in children with autism.
A growing body of research has identified significant sleep problems in children with autism. Disturbed sleep-wake patterns and abnormal hormone profiles in children with autism suggest an underlying impairment of the circadian timing system. Reviewing normal and dysfunctional relationships between sleep and circadian rhythms will enable comparisons to sleep problems in children with autism, pr...
متن کاملCircadian Rhythm Sleep Disorders
Though the theories on the reasons why humans need to sleep vary, there is no disagreement that sleep is essential to our wellbeing and survival. External and internal physiological parameters dictate our own individual body “clocks,” or circadian rhythms. Typically, this clock runs very close to a 24-hour cycle of sleep and wakefulness. However, for some individuals, this clock can be slightly...
متن کاملLight treatment for sleep disorders: consensus report. II. Basic properties of circadian physiology and sleep regulation.
The rationale for the treatment of sleep disorders by scheduled exposure to bright light in seasonal affective disorder, jet lag, shift work, delayed sleep phase syndrome, and the elderly is, in part, based on a conceptual framework developed by nonclinical circadian rhythm researchers working with humans and other species. Some of the behavioral and physiological data that contributed to these...
متن کاملA molecular perspective of human circadian rhythm disorders.
A large number of physiological variables display 24-h or circadian rhythms. Genes dedicated to the generation and regulation of physiological circadian rhythms have now been identified in several species, including humans. These clock genes are involved in transcriptional regulatory feedback loops. The mutation of these genes in animals leads to abnormal rhythms or even to arrhythmicity in con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cold Spring Harbor symposia on quantitative biology
دوره 72 شماره
صفحات -
تاریخ انتشار 2007